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Abstract—This paper presents TOPICS, a production software
architecture for communicating between unmanned maritime
vehicles over high-latency channels, including acoustic and Irid-
ium Short Burst Data (SBD) modems. The architecture is
modular and extensible to facilitate development of mission-
specific capabilities in addition to standard vehicle behaviors.
TOPICS supports multiple redundant communication devices
per vehicle, low-level modem abstraction for “backseat driver”
applications, and file transfer when supported by the modem.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have long been
reliant on acoustic modems for communicating with surface
operators while submerged. The acoustic channel presents nu-
merous and well-documented challenges to communication[1],
[2], which results in low communication bandwidth, high
message latency, and a rapidly changing channel. Increasingly,
AUVs and other unmanned maritime vehicles also rely on
Iridium Short Burst Data (SBD) for remote monitoring and
command when on the surface but “over the horizon.” While
the Iridium channel is significantly more reliable than the
acoustic one, both present long communication latencies and
expose software interfaces that rely on small fixed-length pack-
ets. Acoustic modems, such as the widely used Woods Hole
Oceanographic Institution (WHOI) Micromodem[3], typically
support packets of tens or hundreds of bytes in size, and
a typical Iridium SBD modem supports packets up to two
thousand bytes in size.

TOPICS is a production software architecture for communi-
cating between unmanned maritime vehicles over these high-
latency and packetized channels. TOPICS, which stands for
“Tele-Operation via Packetized and Intermittent Communica-
tion Subsystems,” supports redundant communication devices
on each vehicle, provides a “backseat driver” interface for low-
level modem control, uses the open-source Dynamic Compact
Control Language (DCCL)[4] for data encoding, and supports
modem-driven file transfer when available. TOPICS has been
developed, tested, and deployed on Bluefin AUVs, and in-
tegrates with Bluefin’s SOMA[5] publish-subscribe software
architecture.

There are several recent examples of software architectures
for acoustic communication, including [6], [7], [8] and [9].
Common to these architectures are several philosophies, in-
cluding software isolation between data sources and modem

Fig. 1. Bluefin 21” AUV with dual Sonardyne AvTrak6 HP modems for
redundant acoustic communication.

interfaces, reliance on some form of compressed message en-
coding, and (typically) a time-based Medium Access Control
(MAC) strategy. In addition to sharing those philosophies,
TOPICS key architectural points include explicit support for:

• The Dynamic Compact Control Language (DCCL)[4]
• Multiple modems per vehicle
• Modem control by “backseat driver” applications
• Modem-driven file transfer

In the following sections the TOPICS architecture is described
at a high level(Sec. II), followed by a discussion of the key
architectural points (Sec. III) relative to previous work. Exam-
ples of common usage patterns (Sec. IV) are then presented,
before concluding with a more detailed view of the interfaces
(Sec. V) presented by each component of the architecture and
a discussion of future work (Sec. VI).

II. ARCHITECTURE

TOPICS must fill the needs of diverse vehicles and mis-
sions, across the spectrum of military, commercial survey,
and academic research applications. To maintain future flex-
iblity across all these configurations, including those not
yet identified, the TOPICS architecture was designed to be
highly modular and extensible – with clearly defined interfaces
between only a few types of components. The relationship
between these key components is shown in Figure 2, including
the software interfaces between them. There are four software
components that make up TOPICS: Medium Access Control
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Fig. 2. Key software components of the TOPICS architecture, including the MAC, Data Flows, Physical Layers and TOPICS Core, and an overview of key
interfaces between them.

(MAC), Data Flows, Physical Layers, and the TOPICS Core
which connects the other three types of component. Each type
of component is discussed in greater detail below, in Sections
II-A through II-D.

A. Medium Access Control (MAC)

MAC modules are responsible for determining when teleme-
try can be transmitted and notifying the TOPICS Core that
it can transmit data, along with a deadline by which that
transmission must be completed. It also can notify the TOPICS
Core that control of a Physical Layer should be loaned to a
“backseat driver” for temporary use, as described in greater
detail below (Sec III-C). In the current implementation, the
MAC is driven by a schedule of time blocks assigned to
specific vehicles, though there is the explicit goal of support-
ing more exotic MAC approaches such as Multiple Access
with Collision Avoidance (MACA)[10], MACA for Wireless
(MACAW)[11] or the Distance Aware Collision Avoidance
Protocol (DACAP)[12].

B. Data Flows

TOPICS uses modular Data Flows to organize types of
traffic. A Flow describes a single stream of related data
which can prioritize its own traffic. Examples of a Data
Flow include a file transfer manager, a queue of operator
commands, traffic from a fault management subsystem, or a set
of vehicle status messages. Upon creation, Data Flows must
register the type(s) of message that each will transmit, and
each is responsible for handling any messages that come in
with that same type. Message types are specified using the
Dynamic Compact Control Language (DCCL)[4], in concert
with TOPICS-specific Protocol Buffer extensions.

C. The Physical Layer

Physical Layer modules implement a common interface to
each acoustic or Iridium SBD modem. The modules store
common device parameters, such as the hardware address of
the device, and present a common software interface for com-
munication. While most acoustic modems expect some form
of serial connection to the vehicle, the underlying software
interfaces vary widely from modem to modem. By having
device-specific drivers implement a common Physical Layer
interface, many details of modem protocols are obscured from
the rest of the software stack. The interface does maintain the
packet-oriented nature of these channels, rather than attempt-
ing to craft a stream-oriented protocol, to maintain reliability
in high packet loss environments. Some modems support
built-in file transfer, typically relying on a built-in Automatic
Repeat-reQuest (ARQ) scheme, and TOPICS exposes that
functionality when available.

D. TOPICS Core

The primary role of the TOPICS Core is to mediate between
the Data Flows (which want to send and receive data) and
Physical Layers (which actually can send and receive data)
when data is received, and when instructed to send data by the
Medium Access Control. Key to this mediation is a mapping
between hardware addresses and vehicles, since there will be
multiple vehicles and each may have multiple Physical Layers
that it can rely on. This mapping is contained in a network
model internal to TOPICS. The network model tracks which
vehicles exist, what the addresses are for any Physical Layers
on board each of them, and which Physical Layers should
be used preferentially. In a small network, this model might
consist only of a single AUV and a surface ship running



message Status {
option (dccl.msg).id = 127;
option (dccl.msg).max_bytes = 5;

optional double depth = 10 [
(dccl.field).min = 0, (dccl.field).max = 11000,
(dccl.field).precision = 1

];
}

Fig. 3. A minimal DCCL message for encoding the full ocean depth (0m to
11000m) to a precision of one decimal place. For details of the DCCL syntax,
see [4] and [13].

message Status {
option (dccl.msg).id = 127;
option (dccl.msg).max_bytes = 5;

optional double depth = 10 [
(dccl.field).min = 0, (dccl.field).max = 11000,
(dccl.field).precision = 1,
(bluefin.field).somasub = "*/tracking.depth/*" ,

(bluefin.field).units = "m"
];

}

Fig. 4. The message from Figure 3, annotated with additional TOPICS-
specific metadata. The datasource that should be used to populate the
message field is indicated by “somasub” - which must be a valid SOMA[5]
subscription. The second annotation, “units,” indicates the units of the encoded
data. Many SOMA publications have units associated with the value.

topside monitoring equipment, though the model scales to
larger networks as well.

In addition to the network model, the TOPICS Core contains
logic for selecting a specific Flow when transmission is
allowed. Currently, that logic is simply a priority queue of
the Data Flows; more sophisticated schemes such as Weighted
Fair Queueing (WFQ) are used within individual Data Flows
to provide more sophisticated traffic management.

Finally, the TOPICS Core manages the life cycle of each
subcomponent, ensuring that each is configured correctly,
started, and stopped at appropriate times during the application
life cycle. A main event loop is responsible for triggering
any time-based events scheduled by subcomponents (such as
MAC deadlines), and distributing SOMA messages to any
subcomponents that have requested specific subscriptions.

III. KEY ARCHITECTURAL POINTS

A. Dynamic Compact Control Language (DCCL)

The Dynamic Compact Control Language[4] provides algo-
rithms and a software library for marshalling and compressing
data on board AUVs. Figure 3 shows a trivial DCCL message
containing a single field, the depth of a vehicle in meters. In
addition to defining a structured message consisting of only
the single field ‘depth’, the definition specifies the minimum
and maximum value for the field and the number of decimal
places desired. This information will be used to quantize
the data during transmission for compression. More complex
options for field encoding are built into DCCL, and others
can be created to compress specific types of data. DCCL
message types can be compiled into source code – useful

where reliability is the overriding concern – or loaded at run-
time if greater flexibility is needed.

DCCL, initially developed by Schneider et al. as part of the
Goby Autonomy Framework[9], was selected for TOPICS due
to its extensibility, and the excellent balance it strikes between
flexibility and efficient data encoding. Figure 4 shows the same
trivial DCCL message as in Figure 3, now annotated with
TOPICS-specific metadata used by one Data Flow. The first
field annotation, “somasub,” indicates the name of a SOMA[5]
publication that should be used as the onboard source for the
field’s data. SOMA publications essentially consist of key-
value pairs, with a three-part “Name” representing the key (like
shown) and the value being one of a few supported datatypes.
The second field, “units,” indicates the units that should be
used when encoding and decoding the data. Many values
published using SOMA are done so in the form of Quantities
– which have both a numerical value and a unit. Value
conversion between compatible units (e.g. feet to meters)
is handled automatically, but attempted conversion between
incompatible units (e.g. trying to convert feet to grams) will
be flagged as an error. The TOPICS annotations allow us to
extend that safety and type-checking to acoustic transmissions
as well.

B. Multi-Device, Multi-Vehicle Support

Within TOPICS, Physical Layers are logically aggregated
by vehicle - a single vehicle may have multiple devices it
can send from (as in Figure 1), and there may be multiple
modems on each target vehicle that it communicates with.
TOPICS tracks the set of known vehicles it can communicate
with, along with the “preferred” Physical Layer to send to
when communicating with that vehicle. Incoming data from
all devices is treated identically, allowing (e.g.) commands to
be received by any operational interface. All of this informa-
tion is stored internally in a network model. Physical Layer
preferences, for either the local vehicle or a remote vehicle,
can be updated by a command from the surface.

C. Backseat Driver Interface

AUVs typically have autonomy designed into the main
vehicle computer. For some applications, vehicles now rely
on a “backseat driver” division of labor to facilitate de-
velopment of advanced autonomy algorithms while ensuring
vehicle safety. The main vehicle computer, still responsible
for vehicle control and interfacing with vehicle sensors and
actuators, is augmented by a secondary “backseat driver”
computer running high-level autonomy algorithms. Inspired by
the layered autonomy approach described in [14], this insulates
autonomy-layer tasks from the low-level manufacturer-specific
details of each sensor, and allows advanced algorithms to be
disabled in the case of a vehicle emergency. Many maritime
autonomy frameworks, including MOOS-IvP[15], rely on this
division of labor.

For autonomy applications with no specific communication
requirements, TOPICS can operate as normal and commu-
nicate vehicle status and sensor data. If autonomy applica-
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Fig. 5. Control of TOPICS from the payload section on a single AUV, and by a laptop onboard a surface ship, via a command interface.

tions need to communicate, perhaps to coordinate behaviors
between vehicles, TOPICS can expose a low-level command
interface on both the vehicle, and any surface ship, as shown
in Figure 5. That device-level software interface provides
cues (from the MAC) for when the backseat driver can
communicate. During times where communication is allowed,
the same Physical Layer interface that the main vehicle
computer relies on is exposed via the command interface. This
allows autonomy algorithms to “borrow” the Physical Layer
and communicate their own messages, while isolated from
low-level details of device protocols, and without affecting
basic vehicle status monitoring, command, and control. This
isolation from the physical hardware also allows emergency
behaviors to rescind control from any backseat driver control.

D. File Transfer

When used with Physical Layers that support file transfer,
Data Flows can request that a file be transmitted rather than
a packet when getTelemetry is called. Rather than transferring
a packet containing DCCL encoded data, a single DCCL
message is included in the transmission as header metadata
prior to the contents of the file. This allows files to be routed
to appropriate Data Flows when they are received, based on the
DCCL type of the metadata, and also for arbitrary metadata
to be included with the file transmission. The destination is
still mapped to a modem hardware address using the network
model before transmission.

IV. USAGE EXAMPLES

The following examples illustrate how components interact
during the course of typical usage - packet transmission and
receiption.

A. Transmission

When the TOPICS Core is notified by the MAC that a
transmission can occur, the TOPICS Core does the following:

1) Selects a Physical Layer: First a Physical Layer is
selected for transmission. This is done by consulting the
network model to determine the ‘preferred’ Physical Layer for
this vehicle. If that Physical Layer has failed or is otherwise
unavailable, TOPICS will fall back to other available Physical
Layers.

2) Selects a Data Flow: TOPICS next iterates through all
available Data Flows, checking whether each has any telemetry
to send.

3) Obtains a Send Request from Data Flow: Having de-
termined that the selected Data Flow has telemetry to send,
that telemetry is requested from the Data Flow along with a
destination, unique request ID, telemetry mode, and whether
or not to request an acknowledgement.

4) Converts Destination into Address: While Data Flows
request transmission to specific vehicles, Physical Layers
require hardware addresses to be used as destinations. TOPICS
uses the network model to perform this mapping.

5) Passes Request to Physical Layer for Transmission: The
actual telemetry (whether packet or file), destination hardware
address, and request ID are all then passed to the Physical
Layer for transmission.

B. Telemetry Reception

When telemetry is received by a Physical Layer, the TOP-
ICS Core executes the following steps:

1) Converts the Source Address into a Vehicle: First, the
hardware address of the originating modem is mapped (via the
network model) into a vehicle identifier.

2) Looks Up the Appropriate Data Flow: The DCCL
library is used to identify the type of message, which is then
used to identify the appropriate flow for handling the telemetry.

3) Passes Telemetry to a Data Flow: The telemetry
(whether a packet or file) is then passed to the appropriate
Data Flow for handling.



V. INTERFACES

Each component type has a small number of well-defined
interfaces, as shown in Figure 2. Each interface is described
below, grouped by component type.

A. Medium Access Control (MAC)

There are currently only three interfaces to MAC modules,
as described below.

1) doTelemetry: When a telemetry transmission is allowed,
the MAC instructs the TOPICS Core to initiate a telemetry cy-
cle. This interface includes a deadline by which the telemetry
cycle must be completed.

2) doBackseat: When the “backseat driver” is allowed to
control the modem, ths interface instructs the TOPICS Core
to notify the “backseat driver.” A deadline for when control
will be rescinded is included.

3) changed: The MAC is notified whenever there has been
a change in flow status, such as telemetry now being available
for transmission when it was not previously.

B. Data Flows

Not every Data Flow must implement every one of the
below interfaces. A Data Flow containing a continuously
updating status message, for instance, may only implement
getTelemetry and handlePacket, and have hasTelemetry always
report that telemetry is available.

1) hasTelemetry: This interface is called by the TOPICS
Core to determine whether a given Data Flow would request
data transmission, if getTelemetry were called. The Flow
it is called on is provided the Physical Layer, along with
the transmission deadline, so that the Flow is aware of the
constraints on any transmission.

2) getTelemetry: This interface is called by the TOPICS
Core to obtain data for transmission. It will only be called
if hasTelemetry returned True, and should return valid data.
The Flow it is called on is provided the Physical Layer, along
with the transmission deadline, so that the Flow is aware of
the constraints on any transmission. A request to send either a
packet or a file is returned, along with any necessary metadata
such as the destination.

3) changed: This interface is emitted every time the value
of hasTelemetry might have changed, which may prompt the
MAC or TOPICS Core to start telemetry transmission.

4) handlePacket: This interface is called by the TOPICS
Core when a data packet that matches a registered DCCL type
for this Data Flow is received. The received packet, the time of
arrival, the vehicle which originated the packet, and the vehicle
which was the destination (which may not be this vehicle) are
all provided.

5) handleFile: This interface is called by the TOPICS Core
when a file and associated metadata are received, and the
metadata matches a registered DCCL type for this Data Flow.
The received metadata, the filename, the time of arrival, the
vehicle which originated the transmission, and the vehicle
which was the destination (which again may not be this
vehicle) are all provided.

6) handleSent: After a Physical Layer has completed trans-
mission of a request from a Data Flow, it reports back on the
success or failure of the task and any requested acknowledge-
ment via this interface. The aforementioned statuses and the
request identifier are provided.

C. Physical Layers

Each Physical Layer module must implement four interfaces
for packetized communication - sendPacket, receivePacket,
sent, and info. When a modem supports built-in file trans-
fer, the additional interfaces sendFile and receiveFile can
be implemented by Physical Layer modules to expose that
functionality.

1) sendPacket: This is the primary interface implemented
by Physical Layer modules – it is used to communicate
packets from TOPICS to each individual Physical Layer
module for transmission. Besides the underlying packet data
for transmission, a few specific parameters describing the
transmission request must be provided. These include the level
of Forward Error Correction (FEC) applied to a packet (which
is controllable on many acoustic modems), whether to request
a low-level receive acknowledgement for a transmitted packet,
the hardware address for the packet destination and a unique
request identifier. The unique request identifier is used by the
sent interface.

2) receivePacket: When a packet is received by a Physical
Layer module, the data contained in the received packet, the
time of arrival, the hardware address of the sender, and the
hardware address of the destination are emitted. While some
modems (such as the Sonardyne AvTrak6, or Iridium SBD
modems) only report a packet if it was destined for the specific
modem, other modems (such as the WHOI Micromodem)
report all decodable packets - even those destined for another
device. TOPICS forwards the packet to the appropriate Data
Flow’s handlePacket interface.

3) sent: When a packet or a file is transmitted, a unique
request ID is provided to the Physical Layer by the Data Flow;
when the Physical Layer has completed the sending task, it
reports using the sent interface that the request has been com-
pleted by providing that same unique request ID. If an acoustic
acknowledgement was requested for the packet (supported at
the hardware level by several commercially available acoustic
modems) the status of that acknowledgement is also reported.
TOPICS forwards this information to the appropriate Data
Flow’s handleSent interface. This allows the originating Data
Flow to track whether or not individual messages were re-
ceived to, e.g., support implementing Automatic Retry reQuest
(ARQ).

4) info: This interface communicates the set of capabilities
that a physical layer supports, such as the Maximum Transmis-
sion Unit (MTU) for different telemetry modes, and whether
or not file transfer is supported. It can be accessed by Data
Flows to determine the bounds that telemetry must fit within.

5) sendFile: If a physical layer supports file transmission,
this interface is used to request that a file and associated
metadata be transmitted to a specific destination.



6) receiveFile: If file transmission is supported and a file is
received, the file itself will be saved to a temporary location on
disk. File metadata is forwarded by TOPICS to the appropriate
Data Flow’s handleFile interface along with the filename.

VI. ONGOING WORK

TOPICS is now in active use on vehicles produced by
Bluefin Robotics, so the development focus is now on im-
plementing additional, and more advanced, types of Flow and
Physical Layers. Development on the underlying architecture
continues as well, however, with emphasis on:

• Advanced vehicle payload monitoring and control
• Balancing communication needs and mission objectives
• Implementing more advanced MAC schemes
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